ENVELHECIMENTO TÉRMICO DO POLI(TEREFTALATO DE BUTILENO): ALTERAÇÕES NO GRAU DE CRISTALINIDADE

Elisabete Maria Saraiva Sanchez, Lucila Cinthia Cabral e Maria Isabel Felisberti Instituto de Química – UNICAMP - Caixa Postal 6154 – 13083-970 – Campinas - SP

Abstract

Earlier works showed that mechanical properties of poly(butylene terephtalate), PBT, depends on temperature and aging time. In this work, PBT was submitted to thermal aging at temperatures of 130 °C, 150 °C and 170 °C into an oxidative atmosphere. PBT samples aged at different times were analyzed by differential scanning calorimetry, X-ray diffraction, melting flow index and dynamic mechanical analysis.

The results of DSC and X-ray diffraction showed that the cristallinity degree has increased with time and temperature. This effect was permanent and not only a consequence of thermal history of the material. Aging also modified melting behavior because a fraction of the material melted in a lower temperature. This was attributed to main chain scission, verified by the increase of melting flow index with aging time.

Resumo

Estudos anteriores mostraram que as propriedades mecânicas do poli(tereftalato de butileno), PBT, são bastante dependentes da temperatura e do tempo de envelhecimento. Nesse trabalho, o PBT foi submetido à envelhecimento térmico nas temperaturas de 130 °C, 150 °C e 170 °C em atmosfera de ar. Amostras do material envelhecido a diferentes tempos foram analisadas por calorimetria diferencial de varredura, difração de raios-X, índice de fluidez e análise dinâmico-mecânica.

Os resultados de DSC e de difração de raios-X mostraram um aumento no grau de cristalinidade em função do aumento do tempo e da temperatura de envelhecimento, sendo esse efeito permanente e não apenas uma conseqüência da história térmica do material. O comportamento da fusão também foi alterado com o envelhecimento, resultando em uma fração de material com menor temperatura de fusão. Esse fenômeno foi atribuído à cisão de cadeias, comprovada pelo aumento do índice de fluidez com o tempo de envelhecimento.

Palavras-chave: PBT, grau de cristalinidade, DSC, difração de raios-X, DMA.

Introdução

O poli (tereftalato de butileno), PBT, apresenta resistência à radiação ultravioleta e à altas temperaturas e propriedades elétricas, o que lhe confere amplo emprego na área eletrônica, principalmente em conectores. Sua resistência ao impacto também o torna bastante utilizado na confecção de peças para as indústrias automobilísticas e de eletrodomésticos.

As propriedades de materiais poliméricos podem ser afetadas pelo envelhecimento físico. Assim, por exemplo, as propriedades mecânicas do PBT são bastante dependentes da temperatura e do tempo de envelhecimento ^[1-3].

O comportamento térmico do PBT tem sido extensivamente estudado, sendo que a maioria dos trabalhos enfoca seu comportamento na fusão, frente ao envelhecimento físico ou recozimento (*annealing*).

Robertson *et al.* realizaram vários estudos com o PBT através da técnica de DSC^[4-6] e também de difração de raios-X^[4]. Segundo esses autores, a maior dificuldade é entender a ocorrência, após recozimento, de um segundo pico de fusão a uma temperatura abaixo do pico original, cuja intensidade aumenta, enquanto a intensidade do original diminui. Tratamentos térmicos em temperaturas na faixa de 130 °C a 198 °C por 24 h, resultaram na transformação do material de alta temperatura de fusão em um material com temperatura de fusão mais baixa. Em outro estudo, foi verificado que o comportamento do PBT cristalizado isotermicamente depende do tempo de recozimento. Tempos curtos resultam em dois picos de fusão e tempos longos em três picos.

Righetti^[7] demonstrou por DSC modulado que o primeiro pico de fusão está relacionado com a fusão de cristais que crescem isotermicamente a 200 °C e, a segunda endoterma está relacionada com a fusão de material recristalizado durante o experimento de DSC.

Nesse trabalho, é feito um estudo, por DSC, da fusão e cristalização do PBT submetido a envelhecimento físico em três temperaturas. As amostras envelhecidas foram ainda caracterizadas por difração de raios-X, índice de fluidez e por análise dinâmico-mecânica.

Experimental

O PBT (Valox 325-1001, GE Plastics) foi submetido ao envelhecimento físico em estufa com circulação de ar a 130 °C, 150 °C e 170 °C, por diferentes tempos. Antes do

envelhecimento o PBT foi submetido a tratamento térmico por 2 h a 110 °C com a finalidade de se eliminar a história térmica.

Amostras do material envelhecido foram analisadas por calorimetria diferencial de varredura. As amostras foram aquecidas a partir da temperatura ambiente até 300°C permanecendo em isoterma por 5 minutos; resfriadas à temperatura ambiente e novamente aquecidas até 300°C à taxa de aquecimento de 10°C/min em atmosfera de argônio, no equipamento DSC 2910 – TA Instruments. O grau de cristalinidade foi calculado com base no calor de fusão para o PBT 100% cristalino ($\Delta H = 142 \text{ J/g}$)^[5].

Os experimentos de análise dinâmico-mecânica foram conduzidos na faixa de temperatura de 40 °C a 180 °C, sob taxa de aquecimento de 2 °C/min, à frequência de 1 Hz e amplitude de 0,15 mm no equipamento Rheometric Scientific MKIII.

Os difratogramas de raios-X foram obtidos em um difratômetro Shidmazu Modelo XRD 6000, radiação Cu-K α (λ =1,54060 Å).

O índice de fluidez (MIF) foi obtido segundo a norma ASTM D1238 em um plastômetro de extrusão DSM MI-3, com carga de 2,16 kg e temperatura de 250 °C, sendo observados 180 s de pré-aquecimento antes do início dos ensaios.

Resultados

Nas figuras de 1 a 3 são mostradas as curvas de DSC para o primeiro e segundo aquecimento, para amostras envelhecidas a 130 °C, 150 °C e 170 °C, respectivamente.

Figura 1: Curvas de DSC em função da temperatura para amostras envelhecidas a 130 °C.

A curva correspondente ao primeiro aquecimento para a amostra de PBT não envelhecida apresentou dois picos de fusão, sendo um de baixa magnitude localizado a 218 °C

e outro mais intenso a 230 °C. Possivelmente ocorre o fenômeno de recristalização durante o experimento, o que é notório no segundo aquecimento. Nas amostras envelhecidas por 48 h e 168 h a 130 °C nota-se apenas a presença do pico de fusão principal com um mínimo a uma temperatura maior, o que sugere que o processo de recozimento promoveu a formação de cristais mais perfeitos. Nota-se, também, que há um alargamento do pico de fusão que se acentua com o tempo, indicando que o envelhecimento aumenta a distribuição de tamanho de cristais. Além disso, as amostras envelhecidas apresentaram um aumento substancial na área do pico e, consequentemente, no grau de cristalinidade, chegando a ser até três vezes superior ao PBT de partida (tabela 1). O aumento no grau de cristalinidade também foi observado por Robertson *et al.* em amostras envelhecidas por 24 h em diversas temperaturas, sendo esse efeito atribuído à história térmica ^[5].

Neste trabalho, entretanto, constatou-se que a alteração no grau de cristalinidade no material envelhecido foi permanente, pois o calor de fusão obtido no segundo aquecimento no DSC permaneceu maior que o da amostra inicial.

Aumentando a temperatura de envelhecimento, observou-se o aparecimento de um segundo pico na curva de DSC a temperaturas menores, cuja intensidade aumentou com o tempo (figuras 2 e 3). Robertson *et al.* atribuíram a existência deste segundo pico à formação de cristais menores por cristalização de material cristalino pré existente e de material amorfo. Além destes efeitos, é preciso considerar a possibilidade da cristalização das cadeias menores provenientes da degradação do polímero ^[5]. Os dados de índice de fluidez, apresentados na tabela 1, sugerem a degradação do PBT por cisão de cadeia. As cadeias menores, resultantes da degradação, podem ter causado o aumento no grau de cristalinidade.

Figura 3: Curvas de DSC em função da temperatura para amostras envelhecidas a 170 °C.

Na figura 4 são mostradas as curvas de DSC correspondentes ao resfriamento das amostras envelhecidas a 130°C, que apresentam um pico exotérmico correspondente à cristalização. Observa-se uma forte dependência da temperatura de início de cristalização (Ti) e da temperatura correspondente ao máximo do pico de cristalização (Tc) com as condições de envelhecimento físico. A elevação das temperaturas Ti e Tc em relação as amostras não envelhecidas indicam que tanto as etapas de nucleação como de crescimento são afetadas. Maiores valores de Ti indicam taxa de nucleação maior, talvez devido à presença de cadeias com massa molar menor. Maior Tc também reflete maior taxa de crescimento da fase cristalina.

Figura 4: Curvas de DSC referentes ao resfriamento para amostras envelhecidas a 130 °C.

A figura 5 mostra os difratogramas de raios-X obtidos para o PBT envelhecido a 130 °C.

Figura 5: Difratogramas de raios-X para o PBT envelhecido a 130 °C.

Os difratogramas de raios-X para o PBT envelhecido a 130 °C, mostrados na figura 5, confirmam o aumento do grau de cristalinidade com o envelhecimento, porém não mostram a ocorrência de nenhuma outra forma cristalina diferente do observado para a amostra não envelhecida. Resultados similares foram observados para o PBT envelhecido a 150 °C e 170 °C.

Na figura 6 são mostradas as curvas de módulo de perda (E") em função da temperatura, obtidas por análise dinâmico-mecânica, para amostras envelhecidas a 130 °C.

As curvas de módulo de perda em função da temperatura mostram um pico, que é atribuído à transição vítrea do PBT. A variação observada na temperatura de transição vítrea é mostrada na tabela 1. Amostras envelhecidas a 130 °C e 150 °C, por 48 h, mostram uma diminuição na Tg, que pode estar relacionada a um relaxamento de tensões ocorrido nas primeiras horas de envelhecimento térmico. Entretanto, para as demais amostras não há variação significativa da Tg, indicando que a fase amorfa é pouco afetada pelas modificações ocorridas na fase cristalina. Resultados similares foram obtidos para amostras envelhecidas a 150 °C e 170 °C.

Figura 6: Curvas de E" em função da temperatura para amostras envelhecidas a 130 °C.

Condição de envelhecimento	Temperatura de fusão (Tf/°C) e Grau de cristalinidade (%) ⁽¹⁾				MIF (g/10min) ⁽²⁾	Tg (°C) ⁽³⁾	Temperatura de cristalização (°C) ⁽¹⁾	
	1 ^o aquecimento		2º aquecimento				Ti	Tc
	Tf	GC	Tf	GC				
0 h	230	13	231	17	20	61	182	172
130 °C – 48 h	232	39	228	33	24	54	185	178
130 °C – 168 h	232	33	229	31	26	61	189	183
130 °C – 1440 h	229	31	229	33	36	62	191	185
150 °C – 48 h	232	42	227	30	24	54	192	184
150 °C – 168 h	233	37	229	29	27	61	189	181
150 °C – 1440 h	229	34	227	34	36	64	191	184
170 °C – 48 h	234	30	227	26	24	64	187	177
170 °C – 168 h	229	31	229	28	27	61	192	187
170 °C – 1440 h	229	43	228	33	74	64	183	174

Tabela 1: Dados de DSC, índice de fluidez e DMA.

⁽¹⁾ DSC, ⁽²⁾ MIF = índice de fluidez, ⁽³⁾ DMA

Conclusões

O comportamento da cristalização do PBT é fortemente influenciado pelo envelhecimento.

O envelhecimento do PBT a temperaturas intermediárias à transição vítrea e à fusão resulta no aumento do grau de cristalinidade, sendo este comportamento atribuído à cisão de cadeias, e não simplesmente à história térmica do material.

A forma cristalina, bem como a fração amorfa do PBT não são afetadas pelo envelhecimento térmico.

Agradecimentos

GE Plastics South America pelo PBT e ensaios de impacto, à Fundação CPqD, ao CNPq e à FAPESP.

Referências

1. Sanchez, E.M.S., Angelini, J.M.G., Gisolfi, P.C, Noronha, F., Avaliação da Degradação Térmica de Termoplásticos de Engenharia: 2. Poli (tereftalato de butileno) - PBT, *Anais do 4° Congresso Brasileiro De Polímeros - Associação Brasileira De Polímeros - CD*, 1997.

2. Sanchez, E.M.S., Angelini, J.M.G., Degradação Térmica do PBT: Alterações na Cristalinidade e na Resistência ao Impacto, *Anais da 21^ª Reunião Anual da Sociedade Brasileira de Química*, v.1, QM 87, 1998.

 Sanchez, E.M.S., Cabral, L.C., Envelhecimento Térmico do PBT: Uma Análise Quimiométrica, Anais da 23^a Reunião Anual da Sociedade Brasileira de Química, v.1, QM 46, 2000.

4. Nichols, M.E., Robertson, R.E., The Multiple Endotherms from Poly (butylene terephthlate), *J. Polym. Sci., Polym. Phys. Ed.*, v. 30, 755-768 (1992).

5. Kim, J., Nichols, M.E., Robertson, R.E., The Annealing and Thermal Analysis of Poly (butylene terephthalate), *J. Polym. Sci., Polym. Phys. Ed.*, v. 32, 887-899 (1994).

6. Kim, H.G., Robertson, R.E., Multiple Melting Endotherms in Isothermally Melt-Crystallized Poly (butylene terephthalate), *J. Polym. Sci., Polym. Phys. Ed.*, v. 36, 1757-1767 (1998).

7. Righetti, M.C., Reversible Melting in poly (butylene terephthalate), *Thermochim. Acta*, v. 330, 131-135 (1999).