BLENDAS DE POLIESTIRENO E POLIURETANA COMPATIBILIZADAS IN SITU: PROPRIEDADES MECÂNICAS E DINÂMICO-MECÂNICAS

Silvana Navarro Cassu e Maria Isabel Felisberti Instituto de Química, UNICAMP, Campinas, SP CP 6154, CEP 13083-970 e-mail:misabel@iqm.unicamp.br

Resumo

Blendas de poliestireno e poliuretana foram obtidas por mistura mecânica, utilizando poli(estireno-co-anidrido maleico) como compatibilizante. O teor de anidrido nas blendas foi variado pela adição de diferentes quantidades de SMA. Durante a preparação das blendas um copolímero de enxertia é gerado *in situ* pela reação entre os grupos anidrido do SMA e a poliuretana. Foram usadas duas poliuretanas, uma delas contendo segmentos flexíveis poliéster, PU-es, e a outra contendo segmentos flexíveis poliéter, PU-et. Através de análise dinâmico-mecânica foi possível a determinação da área sob as curvas de perda e de tanô em função da temperatura para a fase elastomérica, as quais apresentaram dependências similares em relação ao teor de elastômero em blendas binárias PS/PU e SMA/PU. Avaliou-se a resistência ao impacto das blendas, observando-se que a mistura contendo 20% em massa da PU-et reticulada com enxofre e baixo teor de anidrido (0,5% em massa) apresentou valor de resistência ao impacto 3 vezes superior ao valor apresentado pelo PS. Os dados de resistência ao impacto foram relacionados às áreas sob as curvas de tanô em função da temperatura, observando-se um comportamento similar entre estes resultados quando o teor de anidrido foi variado.

Abstract

Blends of polystyrene (PS) and polyurethane elastomer (PU) were prepared by melt mixing using poly(styrene-co-maleic anhydride) (SMA) containing 7 wt % of maleic anhydride as a compatibilizer. The content of anhydride in the blends was varied through the addition of different SMA amount. The anhydride group of SMA reacts with PU forming a graft copolymer during the blend preparation. Polyurethanes containing flexible segment polyester, PU-es, and polyether, PU-et, were used. These blends were analyzed through

dynamic mechanical analysis (DMA) and impact resistance The impact strength was

evaluated and the blend containing 20 wt % of PU-et crosslinked with sulfur and 0,5 wt % of

anhydride showed the highest impact strenght, which was 3 times superior to PS ones. The

impact strenghs results were correlated to the area under linear tanδ-temperature curves

showing a similar behavior when the anhydride content was varied.

Palavras chave: PS, PU, dinâmico-mecânico, resistência ao impacto

INTRODUÇÃO

A maior parte das blendas poliméricas é imiscível devido à razões termodinâmicas, podendo ainda apresentar incompatibilidade, resultante da baixa dispersão de uma das fases na matriz e da baixa adesão entre estas. Uma boa dispersão e adesão das fases pode ser alcançada pela adição de um compatibilizante adequado, em geral um copolímero em bloco ou de enxertia, que atua na interface, reduzindo a tensão interfacial. Este copolímero pode, em princípio, ser obtido separadamente e, então, adicionado à mistura polimérica. Uma outra alternativa é gerar este copolímero *in situ* durante a preparação da mistura através de reações de enxertia utilizando-se polímeros funcionalizados [1]. Por exemplo, após a enxertia de cerca de 1% de anidrido maleico nas cadeias de polietileno (PE), este passa a ser compatível com poliamidas, tais como a poliamida-6 e a poliamida-6,6 [2].

Copolímeros de estireno contendo grupos ácidos, anidridos, aminas e epóxidos, entre outros, vem sendo amplamente empregados com a finalidade de promover interações ou mesmo ligações químicas entre pares poliméricos [3]. Entre estes copolímeros um dos mais utilizados é o poli(estireno-co-anidrido maleico) (SMA), que apresenta boa compatibilidade com um grande número de polímeros e tem sido base de algumas misturas comerciais, tais como, SMA/PC e SMA/ABS. Há vários trabalhos na literatura onde o SMA é utilizado como compatibilizante em misturas contendo poliamida [4-9].

No presente trabalho o SMA foi utilizado como compatibilizante em blendas de poliestireno (PS) e poliuretana elastomérica (PU) obtidas por mistura mecânica. A propriedade mecânica de resistência ao impacto destas blendas foi relacionada às propriedades de "damping" obtidas por análise dinâmico-mecânica.

A curva do módulo de perda (E") em função da temperatura, similarmente à espectroscopia na região de infra-vermelho, é uma função da estrutura molecular de um polímero e a área sob esta curva está relacionada à concentração das espécies envolvidas. As relaxações refletem os movimentos das cadeias ou grupos laterais, ou refletem ainda, a presença de microambientes em um sistema polimérico $^{[10]}$. As propriedades de "damping" de uma blenda polimérica são dependentes da estrutura morfológica e química desse material, sendo relacionadas à área sob a curva de tan δ em função da temperatura ou da frequência. O fator de perda, tan δ , é definido como a razão entre o módulo de perda (E") e o módulo de armazenamento (E'), resultando no balanço entre a capacidade de dissipação de energia através de relaxações e a capacidade de armazenar energia mecânica na forma de energia elástica.

Há varias maneiras de se obter a área sob as curvas de tanδ ou do módulo de perda em função da temperatura [11]. Neste trabalho utilizou-se o método de se traçar uma linha de base sob o pico de relaxação da fase elastomérica nas curvas de tanδ e de E", definindo a área a ser calculada.

EXPERIMENTAL

Materiais

As características dos materiais utilizados na obtenção das blendas encontram-se na Tabela I.

Tabela I: Propriedades dos materiais utilizados para a obtenção das blendas.

Polímero	$\overline{M}_{ m w}$	$\overline{M}_{ m w}/\overline{M}_{ m n}$	Segmento Flexível	Origem
	(g.mol ⁻¹)			
PS	293.000	1,90		CBE*
SMA	283.000	1,96		Aldrich
PU-es	107.000	1,91	Poliéster derivado de ácido	Uniroyal Chemical
			adípico	
PU-et	201.000	1,90	Poli(óxido de tetrametileno)	Uniroyal Chemical

^{*}Companhia Brasileira de Estireno.

Foram utilizadas duas poliuretanas, uma delas contendo segmentos flexíveis poliéster, PU-es, e a outra contendo segmentos flexíveis poliéter, PU-et. Nos dois casos o grupo rígido é constituído de cerca de 20 % do isômero 2,6-diisocianato-tolueno, e 80% do 2,4-diisocianato-tolueno (TDI), encontrando-se em concentração de cerca de 4%. Tanto a PU-es como a PU-et contem grupos insaturados em baixa concentração [12].

O SMA utilizado contem 7% em massa de anidrido maleico.

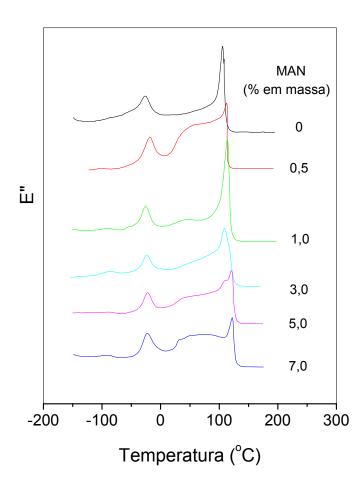
Preparação das blendas

Foram preparadas blendas binárias PS/PU e SMA/PU, sendo as primeiras utilizadas como controle, uma vez que são blendas não reativas. Para se avaliar o efeito do teor de anidrido nas propriedades das blendas foram obtidas blendas ternárias PS/SMA/PU, onde o teor de anidrido maleico (MAN) foi variado pela adição de diferentes quantidades de SMA à mistura (Tabela II)

Tabela II: Teor de MAN e proporção de PS e SMA nas blendas.

MAN (% em massa)	PS (% em massa)	SMA (% em massa)
0	100	
0,5	93	7
1,0	86	14
3,0	56	44
5,0	28	72
7,0	0	100

As blendas contendo 5, 10 e 20% em massa dos elastômeros, PU-es e PU-et, foram obtidas através de mistura mecânica no estado fundido, em um misturador Haake Rheomix 600, utilizando-se rotores para processamento de termoplásticos. As misturas foram preparadas utilizando-se 30 rpm de rotação a 190°C, por 12 minutos. Após 2 minutos de mistura adicionou-se o agente reticulante para o elastômero, peróxido de dicumila, nas proporções de 0,4 e 1,2% em massa, para as misturas contendo a PU-es e a PU-et, respectivamente, conforme recomendação do fabricante [12]. Foram obtidas também blendas utilizando-se 2% em massa de enxofre como agente reticulante [12]. As blendas foram então moídas em um moinho de facas tipo Croton, MA 580 – Marconi. Filmes com espessura de 1,30 mm foram obtidos por termoformagem a 200°C sob 4,4 MPa durante 3 minutos em uma prensa hidráulica MA-098 – Marconi.


Os ensaios de análise dinâmico-mecânica foram realizados em um DMA DuPont Instruments, modelo 983, na faixa de temperatura de –150 a 200°C, sendo utilizada uma taxa de aquecimento de 2°C/min, frequência de 1 Hz e 0,20 mm de amplitude. As dimensões das amostras foram de cerca de 13,0 x 6,0 x 1,30 mm.

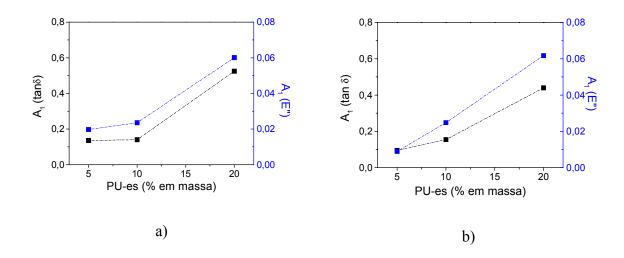
Os ensaios mecânicos de resistência ao impacto (Izod) foram realizados segundo a norma ASTM D 256, utilizando-se amostras entalhadas com dimensões de 63 x 12,8 x 3,7

mm, as quais foram injetadas em um equipamento Mini-Max Atlas - LMM, utilizando-se 5 rpm de rotação, temperatura do fundido de 190°C, e temperatura do molde de 150°C.

DISCUSSÃO

Na Figura 1 são mostradas as curvas do módulo de perda, E", no modo linear em função da temperatura para as blendas contendo diferentes teores de anidrido e 20% em massa da PU-es reticulada com peróxido de dicumila.

Figura 1. Curvas do módulo de perda em função da temperatura para as blendas contendo diferentes teores de anidrido e 20% em massa de PU-es reticulada com peróxido de dicumila.


Em todos os casos, independentemente do teor de MAN utilizado, observa-se uma relaxação a baixa temperatura, que não se desloca em função do teor de MAN, e é relativa à transição vítrea da fase elastomérica, ocorrendo em cerca de -24°C. A relaxação relativa à

matriz ocorre em torno de 111°C. A 5% em massa de MAN observa-se que há um ombro em 112°C que é seguido pela relaxação da matriz a 125°C. Isto indica que nesta composição há separação de fases na matriz entre o PS e o SMA.

As demais blendas apresentaram comportamento dinâmico-mecânico similar ao observado na Figura 1.

Influência do teor de elastômero nas propriedades dinâmico-mecânicas e mecânicas das blendas

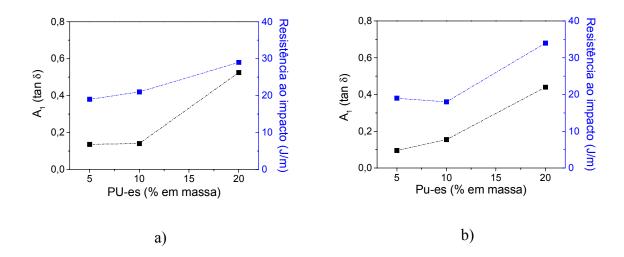
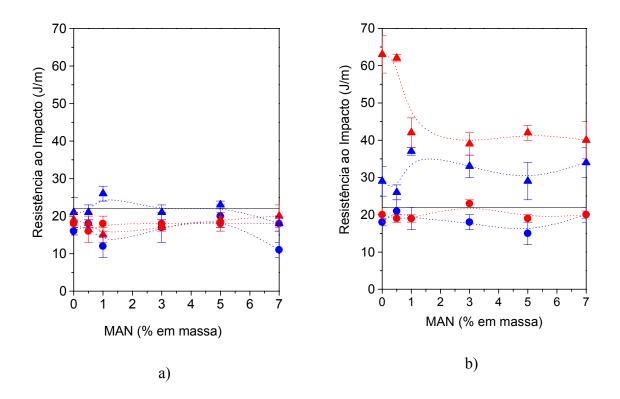

Avaliou-se inicialmente, a influência do teor de elastômero reticulado com peróxido de dicumila nas matrizes PS e SMA sobre o comportamento do módulo de perda e do tan δ . Na Figura 2 são mostradas as áreas do pico relativo à fase elastomérica (A_1) em função do teor de PU-es. Estas áreas foram obtidas a partir de curvas de E" e tan δ em função da temperatura, no intervalo de temperatura de -125 a 0°C.

Figura 2. Área relativa ao pico de transição vítrea da fase elastomérica em função do teor de PU-es em diferentes matrizes: a) PS e b) SMA.

Pela Figura 2 observa-se que para as blendas analisadas a dependência das áreas com relação ao teor de PU-es é a mesma, sejam estas obtidas a partir das curvas de E" ou de tanδ em função da temperatura. O aumento no teor de elastômero causa um aumento nos valores das áreas relativas à fase elastomérica devido ao aumento de fração de volume deste nas blendas.

A correlação entre os valores de "damping" e as propriedades mecânicas obtidas em ensaios de resistência ao impacto foram também avaliadas para as blendas contendo as diferentes matrizes, PS e SMA, em função do teor de PU-es. Estes resultados são mostrados na Figura 3.

Figura 3. A_1 (tan δ) relativa ao pico de transição vítrea da PU-es e resistência ao impacto em função do teor de PU-es em matrizes de a) PS e b) SMA.


A resistência ao impacto aumenta com o aumento no teor de elastômero, seguindo um comportamento similar à A_1 (tan δ) (Figura 3). A resistência ao impacto reflete a capacidade da matriz em dissipar energia mecânica, a qual será proporcional ao teor de elastômero presente. As blenda contendo a PU-et mostraram um comportamento similar .

Influência do teor de anidrido nas propriedades dinâmico-mecânicas e mecânicas das blendas

O comportamento de resistência ao impacto em função do teor de MAN é mostrado na Figura 4 para os diferentes conjuntos de blendas.

A adição de 10% em massa das diferentes poliuretanas, assim como a adição de 20% em massa do PU-es, não causa melhora na resistência ao impacto das blendas em relação ao PS (Figura 4). Entretanto as blendas obtidas com 20% em massa da PU-et apresentam valores de resistência ao impacto superiores ao apresentado pelo PS, independente do teor de MAN usado, sendo que o maior valor é obtido para a blenda contendo PU-et reticulada com enxofre

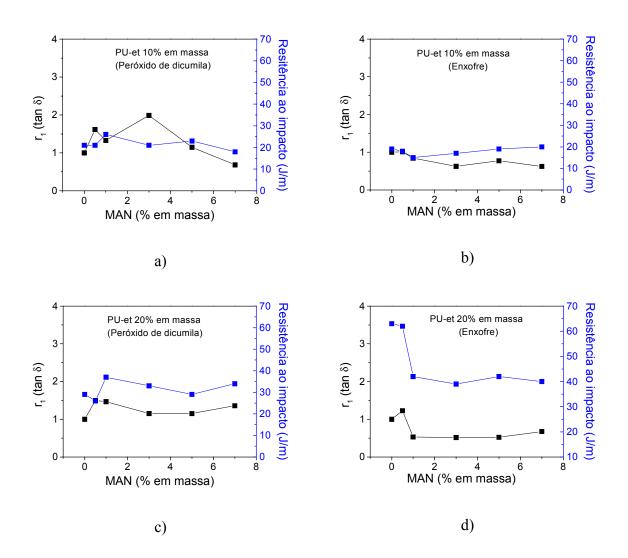

e baixa concentração de MAN (0,5%) (Figura 4-b). Este valor é 3 vezes superior ao valor de resistência ao impacto apresentado pelo PS. Nota-se ainda que a resistência ao impacto diminui acentuadamente para o teores de MAN acima de 1% em massa, o que é atribuído à maior rigidez que este grupo confere às cadeias da matriz.

Figura 4. Resistência ao impacto em função do teor de MAN para as blendas contendo diferentes teores de PU: a) 10% em massa, b) 20% em massa. -●- PU-es e -▲- PU-et, Símbolos azuis e vermelhos se referem a reticulante peróxido de dicumila e enxofre, respectivamente. A linha horizontal se refere a resistência ao impacto do PS.

O comportamento de resistência ao impacto em função do teor de MAN foi relacionado à área sob a curva de tanδ em função da temperatura, relativa à transição vítrea da fase elastomérica. Neste caso, a fração de volume da fase elastomérica é constante, assim, a variação da área relativa deve ser muito pequena, refletindo apenas efeitos morfológicos e a extensão da reação de copolimerização PU-SMA. Dessa forma, optou-se por utilizar a razão r₁ entre a área A₁ do pico relativo à transição vítrea da fase elastomérica em blenda contendo MAN pela área do mesmo pico correspondente à blendas PS/PU-es ou PS/PU-et.

Na Figura 5 são mostradas as curvas de r_1 ($tan\delta$) e de resistência ao impacto em função do teor de MAN, para blendas contendo 10 e 20% em massa de PU-es, reticuladas com peróxido de dicumila e enxofre.

Figura 4. r₁ (tanδ) e resistência ao impacto em função do teor de MAN em blendas contendo diferentes teores da PU-et: a) 10% em massa, reticulada com peróxido de dicumila, b) 10% em massa, reticulada com enxofre, c) 20% em massa, reticulada com peróxido de dicumila, d) 20% em massa, reticulada com enxofre.

A morfologia das blendas é a de uma matriz contínua, constituída pelo polímero vítreo, contendo domínios esféricos formados pela fase elastomérica. O tamanho da fase elastomérica diminuiu drasticamente com o aumento do teor de anidrido em todos os conjuntos de blendas. Este resultado indica que o tamanho dos domínios é governado

principalmente pela concentração do copolímero de enxertia formado durante a obtenção das blendas, o qual deve ser proporcional ao teor de MAN adicionado. Em concentração de 7% de anidrido obtiveram-se domínios da ordem de 0,05 μm, enquanto na matriz de PS estes domínios apresentaram dimensões da ordem de 1 μm e 3 μm em blendas contendo 10% e 20% de elastômero, respectivamente [13]. As relaxações em domínios muito pequenos podem ser afetadas pela matriz rígida, que atua no sentido de restringir o movimento das cadeias de elastômero, reduzindo dessa forma os valores de r₁.

As curvas de resistência ao impacto em função do teor de anidrido seguem a variação nas curvas e r₁ *versus* anidrido. Este comportamento é mais evidente nas blendas que contem 20% da PU-et, nas quais há o aumento nas propriedades de resistência ao impacto em relação ao PS e as demais blendas (Figura 5).

Conclusão

As curvas do módulo de perda em função da temperatura mostram duas relaxações distintas principais para todos os conjuntos de blendas estudadas, as quais são devido a transição vítrea das diferentes fase presentes nas blendas imiscíveis.

Através da variação no teor de elastômero em blendas binárias PS/PU e SMA/PU foi possível se estabelecer a correlação entre a variação no comportamento dinâmico-mecânico relativo a fase elastomérica obtido pelas áreas relativas às curvas de perda e de tan δ em função da temperatura, observando-se que para este sistema, as duas apresentam um comportamento semelhante. Observou-se ainda para as blendas binárias a correlação entre a área da fase elastomérica, obtida pela curva de tan δ em função da temperatura, e a resistência ao impacto

A influência do teor de anidrido na resistência ao impacto das blendas, bem como no comportamento de área da fase elastomérica mostrou a mesma tendência, mostrando uma correlação entre as propriedades dinâmico-mecânicas e de resistência ao impacto para o sistema em estudo.

REFERÊNCIAS

[1] Liu, N. C. e Baker, W. E. Advances in Polymer Technology 11 (1992) 249-262.

- [2] Fox, D. W. e Allen, R. B. em: *Compatibility* "Encyclopedia of Polymer Science and Engineering", Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., Kroschwits, J. I. (eds.), 2ªed., John Wiley & Sons, New York, 1988, vol. 3, p. 758-775.
- [3] Gan, P. P. e Paul, D. R. Journal of Applied Polymer Science 54 (1994) 357-363.
- [4] Kim, B. K. e Park, S. J. Journal of Applied Polymer Science 43 (1991) 357-363.
- [5] Kim, B. K., Lee, Y. M., Jeong, H. M. *Polymer* <u>34</u> (1993) 2075-2080.
- [6] Triacca, VJ, Ziaee, S, Barlow JW, Keskkula, H, Paul, DR. Polymer 32 (1991) 1401-1413.
- [7] Chiang, CR, Chang, FC. Polymer 38 (1997) 4807-4817.
- [8] Dedecker K, Groeninckx, G. Polymer <u>39</u> (1998) 4985-4992.
- [9] Dedecker K, Groeninckx, G. *Polymer* <u>39</u> (1998) 5001-5010.
- [10] Hourston, D. J., Schäfer, F-U. High Performance Polymers 8 (1996) 19-34.
- [11] Kambour, R. P. *Crazing* em: "Encyclopedia of Polymer Science and Engineering", Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., Kroschwits, J. I. (eds.), 2ªed., John Wiley & Sons, New York, 1988, vol. 4, p. 299-323.
- [12] Cassu, S. N. "Blendas de Poliestireno e Poliuretanas: Compatibilização *in situ* e Caracterização" Tese de doutorado, IQ UNICAMP, 2000.